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Experiments with Asa H

R. Jones
Departments of Physical Science
Emporia State University

Emporia, KS 66801

Abstract

We test the abilities of our Asa H software agent by applying it to problems in classification,
robotics, protolanguage learning, and control. Asa is successful in creating/learning a description of each

of these application environments.



Introduction

Our recently developed “Asa H” software architecture (hierarchical autonomous software agent)
consists of a hierarchical network of clustering modules. (Jones, 2006 and 2007) The first (one or more)
layers of the hierarchy comprise an array of classifiers which accepts inputs at each time step and
compares them with stored categories. Each higher layer of classifiers accepts the matches output from
the layer below as its own input vector and is implemented in the same way creating a self-adaptive

hierarchical set of categories. (Fig. 1)

As each category at each time step is evaluated and relayed from the lowest layers of the
hierarchy the developing pattern is cofnpared with stored temporal sequences. The best matching
sequences output a set of “value measures.” The topmost module in the hierarchy combines all of the
values input from the sequence classifiers below it and produces an estimated utility. Upper layers in the
hierarchy correspond to higher levels of abstraction. This architecture bears some resemblance to Amit’s
recent work (Amit and Mataric 2002), to Selfridge’s “pandemonium” (Selfridge 1958), and to Kohonen’s
feature maps (Kohonen, 1958). However, many of the algorithms and learning methods are original.

(Jones, 2006)

Asa H

The lowest layer(s) in our architecture is a set of classifiers which accepts inputs at each time
step, In, and compares them with stored categories. As each category at each time step is passed on
from the categorizing subsystem the developing temporal sequence is compared with stored sequences
(and time dilated, compressed, and shifted sequences (Agrawal, et al. 1995)) in the next higher layer(s)

of the network.



Additional layers of sequence learners are stacked one above the other thus learning a
hierarchically structured “sequence of sequences,” each covering a longer time period then the one
before. The idea is to use the hierarchical organization to reduce computational complexity, each layer
corresponding to a higher level of abstraction than the one below it. The top most sequence classifying
layer outputs a set of predicted “value measures” to the final module in the hierarchy. These “values” are
things like system “health”, damage, energy supply, “foresight,” speed, etc and are detectable in the input
signal by hard wired (hand coded) feature detectors. (The top layer of sequence classifiers learns to
predict the values that will be attained later in time.) “Foresight,” for example, is measured based upon
the sequence’s ability to predict the next one or more inputs, In(t+1), In(t+2), etc. (judged by a vector dot

product or other similarity measure).

The final element in the hierarchy (Fig. 1) combines all the value measures passed up to it from
the sequence classifiers below and produces an estimated utility. Prospective actions can be treated the
same as (occasional) predictions and can consist of innate predefined categories (action primitives) and
sequences. At each time step that action (or inaction) is chosen which maximizes the predicted ultimate
utility given the recent context (input history). Full details of Asa and its learning mechanisms are given in

Jones (2006)

Testing Asa H

In the present paper we explore Asa H's capabilities across a broad range of cognitive tasks and
applications. While doing this we are also suggesting some practical uses for Asa software. In some

cases learning is faster and performance is better than that achieved by humans.



Simulating Neural Networks

We first tested Asa on simple Boolean function learning: AND, OR, XOR, etc. On a single

exposure to the XOR training set, for instance, Asa learns the categories:

C(1,1)= .707
C(1,2)= .707
C (2,3) = -.999
C (3,1) = .707
C (3,2)=-.707
C (4,3) = .999
C (5,1) =-.707
C(5,2)= .707
C (6,1) = -.707
C (6,2) = -.707

And the sequences relating those categories:

S (1,1,1) = .707
S (1,2,2) = .707
S (2,3,1) = .707
S (2,4,2) = .707
S (3,5,1) = .707
S (3,4,2) = .707
S (4,6,1) = .707

S 4,272)=.707



(Asa H 2.0’s representation is more efficient but here we use 1.0 representation for its simplicity.) Upon
subsequent exposures to the inputs (or some noisy inputs that are reasonably similar) Asa responds with
predictions (output):

(Input):(Output);(1,1):(-1); (1,-1):(1);(-1,1):(1); (-1,-1):(-1)

On exposure to the AND training set Asa learns the categories:

C (1,1)= .707
C(12)= .707
C (2,3) = .999
C (3,1) = .707
C (3,2) = -.707
C (4,3) = -.999
C (5,1) =-.707
C (5,2) = .707
C (6,1) = -.707
C (6,2) = -.707

And the sequences relating those categories:

S (1,1,1) = .707
S (1,2,2) = .707
S (2,3,1) = .707
S (2,4,2) = .707
S (3,5,1) = .707
S (3,4,2) = .707
S (4,6,1) = .707

S (4,4,2) = .707



On exposure to the OR training set Asa learns the categories:

C(1,1)= .707
C(1,2)= .707
C(2,3)= .999
C (3,1) = .707
C (3,2) = -.707
C (4,1) = -.707
C (4,2)= .707
C (5,1) = -.707
C (5,2) = -.707
C (6,3) = -.999

And the sequences relating those categories:

S(1,1,1) = .707
S(1,2,2) = .707
S(2,3,1) = .707
S(2,2,2) = .707
S(3,4,1) = .707
S(3,2,2) = .707
S(4,5,1) = .707

S(4,6,2) = .707



Where humans confuse exclusive disjunction and biconditionals and learn them slowly, if at all. (Hunt et
al, 1966) Asa learns them readily; biconditional:

C (1,1) = .999
C (2,5) = .999
C (3,1)=.707
C (3,3) = .707
C (4,1) = .577
C (4,3) = 577
C (4,4) = 577

And the sequences relating those categories:

S (1,1,1) = .707
S (1,2,2) = .707
S (2,3,1) = .707
S (2:2,2) = .707
S (3,4,1) = .707
S (3,2,2) = .707

Exclusive disjunction:

C (5,2) = .999
C (6,2) = .707
C (6,4) = .707
C(7,2) = 577
C(7,3) = .577

C (7,4) = 577



And the sequences relating those categories:

S (4,5,1) = .707
S (4,2,2) = .707
S (5,6,1) = .707
S (5,2,2) = .707
S (6,7,1) = .707
S (6,2,2) = .707

Learning Mobile Robot Control

We next had AsaH control a robot in a simulator (Fig. 2). (Heiserman, 1981 and 1982and Jones,
2006) The complexity of the experiment is adjustable by modifications of the environment and by running
over multiple generations. The value module is retrained after each run and accepts as inputs “damage”,
integrated energy input to the robot, and “foresight” and predicts utility u as output. Damage, energy
input, foresight, and u are each extracted from raw data inputs by hand coded detectors. “Foresight”, for
instance, is measured based upon the sequence’s ability to predict the next (one or more) inputs In(t).
“Damage,” on the other hand, is signaled when an action is commanded at time t but not detected in

In(t+1).

Over successive runs AsaH learns to value (prefer) sequences which extend the robot'’s life
expectancy and avoid those which lead to damage. Sequence classifiers that have been reliably learned

by AsaH include:

High speed AND contact — collision
Collision —» damage

Contact energy —>  recharge



Sense obstacle left —— turn right
Sense obstacle right — turn left

Sense obstacle forward AND move forward ——» contact

Sense obstacle left AND turnlefft —» contact

Sense obstacle right AND turn right - contact

Sense obstacle left AND turn left — > sense obstacle forward
Sense obstacle right AND turn right —»  sense obstacle forward
Sense obstacle forward  AND turn left — sense obstacle right

Sense obstacle forward  AND turn right . sense obstacle left

Sense energy forward _ s move forward

Sense energy left — turn left

Sense energy right ————p turn right

recharge —— charged

charged — back away

Where “ ——— “ means, basically, “followed by.”

Chained sequences (longer sequences) are also formed such as:

Sense obstacle forward — turn left ———» sense obstacle right ——» turn left



And:

Sense energy right — turn right — sense energy forward—move forward——contact

energy , recharge ——» charged —— back away

with, of course, possible time warping.

Learning Protolanguage

We have experimented with linguistic input and output using binary alphanumeric coding. While
learning mobile robot control the linguistic input “collision” is provided simultaneous with robot-obstacle
contact. While moving forward the trainer says “moving forward”. Asa learns to associate the action and
the words. Similarly, a linguistic input “warning” is supplied concurrent with robot obstacle detection. After
such training it is possible for an observer to input a cry “collision” and/or “warning” and evoke

preemptive evasive actions from the robot. The chained input pair “warning”, “collision” typically has a

stronger influence on the robot behavior than either input alone. Asa has learned, for instance:

Hear “collision” _,  collision

Hear “warning” — damage

Hear “obstacle” ——  slow down

Hear “clear ahead” —— speed up

Hear “turn left” ——  turn left

Hear “turn right” — . turn right



Hear “stop” ——» stop

Sense obstacle ——  say “obstacle”
Slow down — say “slow down”

Turn right ——» say “turn right”
Turnleft ____,  say “turn left’
Recharge — say “recharging”
Collision —» say “collision”

Move — stop — say “stop”

Stop ——>»> move ——— say “‘moving”

Chaining also produces phrases like “obstacle”, “slow down”, “turn left”. Once a substantial
amount of real world experience has been recorded we may try natural language 1/0O in multiple

languages. World knowledge might then aid in translation between different input and output languages.
Vocabulary and Concepts

In an effort to move beyond protolanguage we have begun to teach Asa H standard sign language

(Jones, 1968). So far Asa H has learned the vocabulary/concepts:
Collision

Warning



Obstacle

Clear

Turn

Stop

Move

Slow

Fast

Recharge

Damage

Rakison and Lupyan (2008) have demonstrated the early development of the concepts of causality,
animate objects and inanimate objects in neural networks. Asa H is able to learn the same feature sets

and sequences used by Rakison and Lupyan (2008, figure 16 and appendix).

Learning lon Source Control

Our plasma ion source is a low-pressure hot filament arc (Jones, 1997). The operator is able to
control the ionizing (“primary”) electron emission from the filament cathode by adjusting Vs, the filament
heating voltage. The primary electrons are accelerated and the discharge is sustained by the variable

discharge voltage Vy. The gas fill pressure, P, is controllable by a servo actuated needle valve.



The operator is able to monitor the source operation by measuring the voltage Vi and Vg as well
as the corresponding filament and discharge currents I and |4 and the neutral gas pressure (obtainable
from thermocouple or ionization type vacuum gauges). The operator also monitors the real-time
performance or output of the source by measuring the plasma density, Ne, and (electron) plasma

temperature, Te.

At each time step Vs, Vg, I, lg, P, Ne, and T, are measured and updated settings for Vs, Vg, and P
are output. The sequence of this vector is sought which maximizes the time integral of ion output NeTe'"2.
Figure 3 illustrates the ion output attainable by a human operator (xs) and by Asa H as a function of

time/learning (circles).

Self Monitoring

In an effort to fine tune the learning process in more complex environments we have added self

monitoring inputs and self adjusting outputs. These inputs watch the time spent:
Taking input
Giving output
Searching the case base
Feature extraction
Adding to memory

Sorting



Comparing

Extrapolating

Deducfion

Value assessment/simulation

And updating cases.

Outputs then adjust the amount of time spent on each of these operations in an effort to adapt the

learning process to the environment seen. (Adjustments are based upon utility improvements measured.)

As a consequence of self monitodﬁg"‘irt rapidly changing environments input is accepted
frequently, at the expense of extrapolation, eté. Th“‘s"low changing but complex environments input is

accepted less frequently and more extrapolation is performed.
Conclusion

Our Asa H software agent (Jones, 2006) has been successful in experiments involving

classification, robotics, protolanguage learning, and control. In each case Asa learns/creates a suitable

task description appropriate to the application environment.
It is possible for Asa to do far more selfmonitoring than people
do. We find, however, that this can actually be a distraction and
ultimately reduce problem solving efficiency. Again, time spent

needs to be adjusted based on utility improvement.



Figure Captions

Figure 1: The hierarchical agent architecture.

Figure 2: Simulated robot, R, free to wander among obstacles, O, encountering energy sources,

S. The space is assumed to be discrete and toroidal.

Figure 3: Total ion yield per run as function of training time.
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Capitalism is Wrong

R. Jones
Department of Physical Sciences

Emporia State University

Abstract
Its argued that capitalist economics has a theory of value which is not consistent with

traditional human values and society’s legal system.



We must begin by distinguishing two different sorts of quantities, scalars and vectors.
1. Scalars versus Vectors
A scalar is a quantity that can be described by just a number. Your age, or height
or weight or the number of people in a room, these are all scalar quantities. A vector, on
the other hand, is a quantity that requires two or more numbers in order to describe it. An
example might be the journey (displacement) “3 blocks north and 5 blocks east.” These
two distances must remain distinct. Motion northward can not substitute for motion

eastward or vice versa.

2. Value Monism versus Value Pluralism
Value monism is thé idea that there is only one thing of value (pleasure perhaps?)
or that at least it is possible to define a single “common currency” in terms of which the
value of all things can be measured (money?) Value pluralism is simply the rejection of
value monism, the idea that there are 2 or more things to be valued (e.g. your wife’s love
and your child’s life) and that they can not be reduced to, or compared via, some common

currency.

3. Utility
In capitalist economic theory a utility function maps any state of affairs (with its
costs, rewards, opportunities, etc.) to a real number, a scalar. Frequently this scalar utility

is simply money; in other situations it is some more generalized scalar quantity.



4. Needs

Human beings have multiple needs. We need air to breath, water to dﬁﬁk, and
food to eat. (It should be noted that air is free, and water is often free, while food can be
so expensive that many people starve to death.) To survive we have other needs as well.
Many of these needs are “incommensurable,” that is they can not be measured by a
common standard; one can not be traded off for another. No amount of water can make
up for having no food to eat. A plentiful supply of fresh air can not make up for a lack of
water to drink.

5. Utility is a vector

Human values, in turn, arise from our needs and are also incommensurable.
(Berlin, 1998, XVIII) Economic “utility” must be a vector quantity (Dasgupta, et al,
1999, and Liu, 1999, 6) it can not be a scalar “money”. Business and capitalism are
profoundly in error when they employ a mere scalar utility. A common currency is
simply impossible. Keeney and Raiffa, state (1976, 19): “in complex value problems
consequences . . . cannot be adequately described objectively by a single attribute (e.g.
money).” It is not possible to put a dollar value on your wife’s love or your child’s life.
These are examples of values we have which are incommensurable with money and with
each other. They are separate components of the value VECTOR.

“Value monism” is wrong, the human value system is simply too complex to be
boiled down to a single scalar (Pepper, 1998). You distort human values when you try to
sum them all up as a single scalar. Just the instruction, “travel 8 blocks” is not adequate

to represent “3 blocks north and 5 blocks east.” When you try to put a price on love you



create prostitution. When you try to put a dollar value on a human being you begin
slavery.

The “bottom line” can not accurately describe the worth of an enterprise.
Business and capitalism are wrong in both the technical sense and the moral sense. Some
economists defend scalar utility as simply an axiom. Buta science does not get to try
just ANY axioms. It only gets to use axioms that fit the facts. In the words of Beardon,
et al “contrary to the widely held and inveterate belief of economists, there does exist a
preference relation which is not representable by a utility function.” (Beardon, et al,
2002) Human value systems are just more complex than business and capitalism allow
for.

Von Neumann and Morgenstern (1944, 19-20) said “We have conceded that one
may doubt whether a person can always decide which of two alternatives. . . he prefers. . .
. It leads to what may be described as a many-dimensional vector concept of utility.” But
they evidently never published further details. In an effort to flesh out such a theory
Dubra, Maccheroni, and Ok have published Expected Utility Theory without the
Completeness Axiom (2001). Danan and Ziegelmeyer have reported on experiments
which show that just such a theory is needed to successfully model human value
judgments. I believe our everyday business and economic life must be modified to take
account of these discoveries. Money can not be used as the sole yardstick.

A scalar simply contains too little infonnation to do what capitalists want it to do.
“Value pluralism” is required. If you insist on describing how successful a man is using

a scalar then evolutionary biology tells us it should be something like U=(N-2)/L where



N are the number of offspring (children) you have and L is you lifespan. Notice how
poorly money will correlate with this in the capitalist world.

A person’s utility is really a vector, having components like fertility, life
expectancy, IQ, etc. Suppose you wish to compare Jane and Mary. If Jane has all
components of the utility vector greater that Mary then you can conclude that Jane is
more successful that Mary. If, however, some components are greater for Jane while
others are highest for Mary then no conclusion is possible. Wealth is just a component of
such a utility vector. Assuming a scalar utility like money is an approximation. In
simple problems it may work fine but in the real world it is inadequate. In comparing and
choosing which college you wish to attend one school may have English, Economics and
Math majors but no Earth Science major. A second college may have the Earth Science
major, English, and Math majors but no Econ major. You just can not create a scalar
utility that says which college is “better than” the other. Von Neumann admitted that
utility might have to be a vector and was making an approximation when he assumed it to
be scalar.

Business and capitalism require value monism while the human value system is
characterized by value pluralism. If you have any doubt that human society exhibits
value pluralism you need only observe the legal system. Upon being found guilty of
some crimes it is only required that you pay a fine, where as in other cases you must pay
with your life, or at least some years worth. No one would be satisfied to see a serial
killer merely pay a fine each time he took another life. As Arrow says (1997, 757)
“Regardless of our all-embracing market theories, we economists must recognize that

there are goods that might be bought and sold but aren’t . . . Judicial decisions and votes.



.. Use of the market and its language leads to results which offend our intuitions . . . The
market is one system . . .Looking at policy issues from the point of any one system is
likely to lead to unsatisfactory conclusions”

Occasionally a capitalist may admit that value pluralism is needed in real life and
then claim that businessmen do consider more than just their treasured “bottom line”. If
there is any truth to this claim I would amend my criticism to say that capitalism makes

too much use of value monism and too little use of value pluralism.



Value monism

| have argued elsewhere against value monism (http:/Amww.robert-w-jones.com/,
philosopher, axiclogy).

A strong argument against value monism is the fact that the monists can not agree on
what is the single thing that is to be valued. Some suggestions have been:

pleasure

life/health/age

maoney

“utility”

“fitness"

goadness/godliness

time (but one could change this or one's age by relativistic means, and so....)
energy

etc....



References

Arrow, Kenneth. 1997. “Invaluable goods.” Journal of Economic Literature, 35:2, 757-
765.

Beardon, Alan, Juan Candeal, Gephard Herden, Esteban Indurain, and Ghanshyam
Mehta. 2002. “The non-existence of a utility function and the structure of non-
representable preference relations” Journal of Mathematical Economics, 37, 17-38.

Berlin, Isaiah. 1998. Concepts and Categories. Princeton, New Jersey: Princeton Univ.
Press.

Dasgupta, Pallab, P.P. Chakraborti, and S.C. DeSarkar. 1999. Multiobjective Heuristic
Search. Weisbaden, Germany: Vieweg.

Dubra, Juan, Fabio Maccheroni, and Efe Ok. 2001. “Expected utility theory without the
completeness axiom” ICER Applied Mathematics Working Paper 2001/11.

Keeney, Ralph and Howard Raiffa. 1976. Decisions with Multiple Objectives. New York,
New York: Wiley.

Liu, Boading. 2002. Theory and Practice of Uncertain Programming. New York, New
York: Physica-Verlag.

Von Neumann, John and Oskar Morganstern. 1944. Theory of Games and Economic
Behavior. Princton, New Jersey: Princeton Univ. Press.

Pepper, Stephen. 1958. The Sources of Value. Berkeley, California: Univ. of Calif. Press



Chaining Case-based Reasoners -

R. Jones
Physical Science Department
Emporia State University

Emporia, KS 66801



Abstract
A fuzzy knowledge-based system is described wherein individual
‘production rules are replaced by case-based reasoners. The knowledge
engineering effort required to create such an expert system is considerably

reduced as compared to more traditional methodologies.



Introduction

Knowledge-based systems have become an important class of computer
software (Jackson, 1998). The most common sort of knowledge-based or
“‘expert” systems are the “production” or “rule-based” systems consisting of a set
of if-then condition-action rules like:

1. amanis an animal

and:

2. an animal is mortal
which, in combination with facts like:

3. Socrates is a man
are chained together (using conventional first order predicate logic) to produce
conclusions, e.g.:

Socrates is mortal

Another sort of knowledge-based system is the “case-based reasoner”
(CBR). CBRs contain a set of stored records or “cases” which are compared
with new inputs (inquiries). If the inquiry “closely resembles” one of the stored
records the output (prediction) associated (stored) with that case is assumed to
apply to the new situation as well (Kolodner, 1993).

Chained Case-based Reasoners

The present system is a significant variation on traditional case-based
reasoning. Conventional CBRs follow what might be described as a radical
behaviorist-like model. That is, only inputs and outputs are employed, there are

no intermediate (“internal” or “hidden”) variables and no chaining to conclusions.



In our system, however, input values first generate intermediate results and
these, in turn, are then combined in order to calculate further intermediate
variables, and then, ultimately, output predictions. Any number of CBRs may be
combined (chained) to produce a complete expert system (Jones, 2005) a kind of
fuzzy semantic network.
A simple example

The system operation is probably best illustrated with the help of a simple
(“toy”) example which is intended to predict the likelihood that a given student will
chose to attend some particular college. Three case bases are assumed to
describe this decision process:

1. The student’s grade average, parents’ total annual income, and any
special eligibility status will determine the amount of financial aid the
student can expect to be offered.

2. The student’s grade average, ACT test score, minority status, and
number of extracurricular activities will determine whether or not the
student will be accepted for admission to this particular school.

3. The school’s annual tuition rate, financial aid amount offered,
acceptance for admission, the size of the school, and its proximity to
the student’s home will determine how likely the student is to attend
this particular school.

This example is intended for illustrative purposes only. It is not based on criteria

employed at any real university.



Our software differs from the more conventional rule-based systems in that each
‘rule” is instead implemented as a complete case-based reasoner. Previous
student applicant records are used to assemble the case bases of figures 1-3.

When a new student is under consideration this set of 3 CBRs can be
used to determine the likelihood of his/her attendance. In the simplest possible
implementation the input data are compared with the individual case bases of
figures 1 and 2 to determine if the new student will gain admission and how much
financial aid he/she might expect to receive. These intermediate results are then
passed along to the CBR of figure 3 to determine the likelihood of the new
student’s attending this particular school.

For each case base some similarity measure is employed in order to
locate the recorded case which most closely resembles the new input. The
simplest method for doing this simply counts the number of attributes that the
inquiry and the recorded case share in common. Vector dot products and other
similarity measures are also available to define a match (Kolodner, 1993). The
output recorded as part of that best matching case is then assumed to be
applicable to the new student as well. Free CBR software is available for such
nearest neighbor matching (Casual and Protos).

Alternatively, multiple cases can be used to interpolate to an output for the
new inquiry. Outputs from n nearest matching cases can be retrieved and
weighted by factors:

sum-distance
sum (n-1)



where “distance” is the distance between the input vector and that particular case
and “sum” is the sum of the distances for all n records used in the interpolation
(Stahl, 2001). Euclidean, Manhattan, or other distance measures can be
employed in the calculation.
An Example Inquiry

Suppose a new student applies for college admission and has:

A grade point average of: 3.7

Her parents’ income is: 45k

Her status is: 0

Her ACT score is: 28

Her number of extracurricular activities was: 3

Her minority status is: 0

The particular school’s tuition is: 6k$

The particular school’s size is: 4k

The distance that the applicant lives from this school is: 15 miles

The new student’s descriptors do not exactly coincide with those of any
previous applicants but figure 2 suggests that she most closely resembles
students which were accepted, with the nearest match being with case 7, and
figure 1 suggests she most closely resembles a student who received 5k$ per
year in financial aid (case 7). When these results are then passed on to the case
base of figure 3 we find that the new student most nearly resembles a student
who did ultimately choose to attend the school. (i.e. case 7)

Conclusion



It has been possible to decompose a case-based reasoning system into a
chain of smaller CBRs. This has the potential of speeding up the construction
and use of large scale applications and making their detailed reasoning more
transparent to the user. The knowledge engineering is considerably reduced in
that the cases do not have to be decomposed into individual small scale rules but

instead can be employed as recorded.
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Figure 1

Inputs Output
grade point  parents’  special financial Case
average income status aid offer #
(4.0 scale) (k$) (Oor1) (k$/yr)

3.8 20 0 5 1
3.75 22 1 5 2
3.1 22 0 3 3
3.0 20 1 5 4
2.5 24 0 0 5
2.6 25 1 0 6
3.75 50 0 5 7
3.85 51 1 5 8
3.0 55 0 0 9
3.2 70 1 5 10
2.5 60 0 0 11
2.4 80 1 0 12
3.8 100 0 5 13
3.85 150 1 5 14
3.0 110 0 2 15
2.6 100 0 0 16




Figure 2

Inputs Output
grade ACT extra curricular minority acceptance Case
average score activities status #
(4.0 scale) (#) (#) (Oor1) (Oor1)
3.8 30 2 0 1 1
3.75 31 3 1 1 2
3.1 30 4 0 1 3
3.0 29 3 1 1 4
2.5 29 3 0 1 5
2.6 28 2 1 1 6
3.75 27 3 0 1 7
3.85 28 2 1 1 8
3.0 26 0 0 0 9
3.2 27 2 1 1 10
2.5 26 1 0 0 11
2.4 25 1 1 0 12
3.8 22 1 0 0 13
3.85 23 2 1 1 14
3.0 22 1 0 0 15
2.6 23 1 0 0 16




Figure 3
Inputs Output
tuition |financial aid admission | distance from| size of likelihood Case
offer acceptance home school of attendance #
(k$/yr)|  (k$lyr) (Oor1) (miles) (# students) (0-1)
3 2 1 15 4 1 1
3 3 1 10 4 1 2
3 0 0 40 4 0 3
3 2 1 100 10 0 4
3 3 1 25 10 1 5
6 2 1 100 4 0 6
6 5 1 20 4 1 7
6 5 1 200 4 0 8
6 0 0 25 10 0 9
6 2 1 20 10 1 10
6 3 1 20 10 1 11
15 5 1 40 10 0 12
15 0 1 100 10 0 13
15 3 1 50 10 0 14
15 5 1 40 15 1 15
15 0 0 30 15 0 16
15 3 1 50 15 0 17

/]



Objective Analysis of Student Data
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Introduction
“How good is my data?” How much data do I need to take?” These are common
student questions and are often difficult to answer. In the present paper we outline
methods for objectively deciding such matters.

Linear Relationships

In our typical first year physics course and advanced laboratory course many of

the relationships we have students investigate are linear:

F =ma plot Fvsa
F=kx plot Fovs x
PV = NkT plot P vs %
QO=mL plot O vsm
f=uN plot f vs N
V =1IR plot V ovs I
R= pL plot Rvs L

A
I*RAt = mcAT plot AT vs At
ni = @ plot y Vs n

L
1 1 1 1 1
—=—+— plot — Vs —
f do dl do di

3

=t J(f)z plot Bvs 1

a 5

V =— lot V vs —
q p P



In other cases where the equations are nonlinear we recast the relationship in linear form

by suitable mathematical transformations:

y=—gt plot y vs t°

F = mrw? plot Fvs w
L'y? 1

T=4 Z;Z'U plot T vs )

T= 272'\/% plot r vs m

2

T’ = 4z L plot 2 vs L
g

n sinf, =n,sind, plot sing, vs siné,

ln—]i ==X plot InN vs x

N, A

o

The Pearson Correlation Coefficient

Having cast everything in simple linear form we can investigate the quality of our

data using the common Pearson “R” correlation coefficient:!

2

where X is the independent variable, Y is the dependent variable, and N X,,Y; data points

have been measured.



Many computer plotting software utilities provide the Pearson R value (or,
alternatively, R”) along with a graph X, vs ¥,. MS Excel is one common example

which we use. Pocket calculators (like the TI-83) can also compute R as one of their
statistical analysis functions.

Guilford? says that R >.9 indicates “very high correlation,” a “very dependable
relationship” and we usually adopt R >.9 as our definition of “good data.” Work in the
social sciences might require a relaxation of this standard.

If one wishes to minimize the amount of math involved, it is possible to supply
the students with a graph like figure 1. Data points have been chosen to give a
correlation coefficient of R =.9 for this graph. Students can be instructed to hold their
data plots alongside this model. Qualitatively, if their data looks as good or better than
figure 1 then R >.9 and they have “good data.”

How much data should I take?

It is possible to use a similar method to decide when enough data has been taken.

Suppose students have collected the following data:

X Y
2 3.1
2.1 5
3 5.1
3.1 7

A calculation of the correlation coefficient gives R =.79. If we are striving for R .9,

we are led to take more data, perhaps arriving at:



X Y
2 3.1
2.1 5
3 5.1
3.1 7
1 1.5
1.1 2.5

The Pearson R value is now R =.92 and “enough” data has now been taken. It is worth
pointing out to students that you only know how much data to take after you have begun
to take measurements, not before. Data taking and analysis should be interspersed. One
should not try to separate data taking from data analysis. Of course in real life one might

also have to stop when you run out of time or out of resources.



R.C. Sprinthall (1994) “Basic Statistical Analysis” New York: Allyn and Bacon,
pg211.
J.P. Guilford (1956) “Fundamental Statistics in Psychology and Education” New

York: McGraw-Hill, pg. 145.
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Machine
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R. Jones
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Abstract
A variety of computer experiments have been conducted in order to explore several forms

of potential machine creativity.



Introduction

Automated creativity is not new. Stephen Thaler believes that he has developed a “creativity
machine” which can invent things and discover ideas (Thaler, 1996). Quillian’s semantic memory
program was shown to be capable of discovering “an idea that was implied by, but by no means
expressed in, the data that were input.” (Quillian, 1968 and Cohen and Feigenbaum, 1980)
Rumelhart et al have shown that semantic networks can be learned by artificial neural networks
(ANNSs) and that by exploring unusual input attributes (descriptors) the ANN can itself invent new
categories from the original input categories (Rumelhart, et al, 1986).

Autoassociative Neural Network Experiments

In the present work we train an autoassociative neural network on known categories (known
plasma confinement schemes). Once trained the ANN can recall each of the input categories or
generate interesting new confinement ideas.

The autoassociative neural network (ANN) consists of N input units, one for each attribute
(parameter) relevant to each input category (vector) I, These are fully connected to M hidden units.
Normally M<N in order to force the hidden layer’s internal representation to compress the input data.
(A significant role of theory is data compression.) We can add hidden units if the network fails to
train properly. The hidden units are, in turn, fully connected to N output units. In an auto associator
the outputs are duplicate copies of the inputs I,. All variables in I, are normalized so as to fall within
the unit interval.

For each input vector I, the hidden unit j receives an input:

N
h=Sw, [ +w, (D
k=1

and produces an output:



\V2

1
I+exp(-h;) (2)

(We don’t know that this function is optimum but we use it because it is mathematically convenient).
W, is an adjustable bias.

Output unit k then receives:

M
h=Xw,V, + w, 3)
j=1
and computes the output vector:

1+exp(-hy) 4)

(It is possible for us to introduce more than 1 hidden layer if we so desire. Three hidden
layers are adequate to represent any continuous function. Five hidden layers are adequate to
represent any discontinuous function.) The initial values of the weights W, and W, are random
numbers in the range between 0 and 1. The I,' values can be thresholded if binary output is desired.

The computed theoretical output vector I,' is compared with the actual vector I, and the error
I,-I.' is “back propagated” in order to correct the weights W,;and W, (Bishop, 1994).

The weights W,; are corrected by amounts:

| 1 1
L= - ! l - V
Awy; = C(I-I,") ( Tvoxp (-hy ) Trowp (-hy ) V. (5)
and the weights W, are corrected by amounts:
1 1
AW, =2C{-1, 1 - )
jk (k k) ( l+exp(—hk) ) 1+exp(—hk) (6)

1 (1 - L )1,

Wiy | 1+exp (-h,) ) 1+exp (-h,)




where c, the “learning rate”, is a constant, typically 0.1

The weights are adjusted (corrected) at each calculation step by:
new W, =old Wy;+ AW,
(7
new Wy =old W + AW,

and the process is repeated, using the same single I, until I,-I," is smaller than some desired error.
This whole process is then repeated with each additional available training vector I, each vector
representing a different input category. Adjustable noise can be added to help escape from local
minima.

Training on subsequent I, data sets reduces the network’s ability to reproduce previous data
input. For this reason, repeated training “passes” are made through the complete training set until
I,-I.' is acceptably small for all data sets employed.

ANN Creativity

We will first illustrate how ANN operates with a “toy” example. In this “simplest possible
example” ANN is told only that I. a “stellarator’” has good plasma confinement, no open field lines,
no plasma rotation, and a closed magnetic geometry. ii. A “tandem mirror” has good confinement,
a potential barrier Av,, no plasma rotation, and no closed geometry (i.e. “open” geometry) iii. A
“centrifugal trap” has poor plasma confinement, no closed magnetic field, (open magnetic
geometry), and plasma rotation. It knows nothing more. The input data are represented in vector
form, table 1.

An ANN trained on the 3 vectors I, of tablel functions as a content addressable memory.
If we input only the knowledge that the system of interest has a closed magnetic field, i.e. inputting
the vector:

=0 0 0 0 1
we obtain as output:
[=0 0 01 1
i.e. the ANN thinks we are describing a stellarator, a system characterized by a closed

magnetic field and good confinement.



On the other hand if we ask ANN for a system with good plasma confinement i.e. if we input:
L= 0 0 0 1 O
we may (and did) get as output:
= 1 0 0 1 1
i.e. ANN suggests that oy, and closed magnetic fields are associated with good confinement and
should be employed simultaneously. This “new idea” is, in fact, “magneto electrostatic
confinement”, a new approach to controlled fusion (Jones, 1992).

Relatively little knowledge is represented in this toy example. ANN is told, for instance, that
good confinement can be related to either electrostatic potential barriers or toroidal magnetic fields.
Only a few other facts are provided in this austere database.

Science is both theory and experiment driven. ANN produces new associations based on its
representation of the input data. If experiments do not support this extrapolation then the observed
results (associations) can be input as additional (new) training data and the process iterated. If, for
instance, nonmonotonic V, and closed B led to poor confinement we would input the new training
vector:

=1 0 0 0 1
in addition to the vectors of table 1.

Our toy problem was given very little information but it was exactly the information needed
with which to synthesize the new idea of magnetoelectrostatic confinement. In any realistic ANN
database much larger amounts of data will be input. Much of it will be a mere distraction leading,
at best, to other new ideas, at worst to nothing useful. ANN can synthesize new ideas but there is
no guarantee that they are correct, only experiment can determine that.

The toy example does little more than merely add two ideas together. A more realistic
example is given in table 2. In this database there are 8 input vectors, each is a different sort of
common plasma source. 8 different attributes characterize these devices: V, voltage, I, discharge
current, B, magnetic confining field, HC, hollow cathode , N, relative plasma density (medium=.5,
high=1, low=.1), V,,;, wall bias voltage, C, number of cathodes (none=0 single=1, many=4), M,
magnetic multidipoles.

An ANN trained on the data vectors of table 2 was stimulated by the input:
= 0 0 0 0 0 -1 00



and gave the output:

L'=s 0 0 0 0 0 -1 0 1
suggesting that a negative wall bias be employed with multidipoles. This is the “Emporia source”
geometry explored by Jones (Jones, 1987).

In the present examples the user has identified the attributes, and the semantic categories.
The value given to each attribute of a category simply represents its frequency of occurance
(association with) that category. I=always present, O=never present, .5=present, ~ % the time, etc.
Alternatively, the user can supply attributes only and an ART (adaptive resonance theory) network
can discover semantic categories directly from data/examples.

In general ANN is not simply adding two semantic networks and regurgitating all of their
attributes. An attribute present in one semantic net may be deleted from the “composite” output.
This was seen in the example on page 34 of Rumelhart (Rumelhart, 1986).

The examples cited so far were given very limited input information and therefore their
outputs are similarly limited. Table 3 represents the largest example we could display on a single
sheet of paper but it is still rather small compared to some databases we have employed. Each input
vector represents a description of an approach to controlled fusion. An ANN trained on these
semantic descriptions is being searched in an effort to discover new confinement schemes. Finer
grained (more detailed) attributes are also useful.

ART Network Experiments

It is common for plasma confinement devices to exhibit a variety of operational regimes.
Bumpy tori exhibited 3 primary confinement modes, termed C, T, and M. (Colchin, 1983). In
addition to these the T mode could be further divided into submodes having either positive or
negative ambipolar potential.

Tokamak devices, on the other hand, are attributed with L, H, Z, P (Kaye, 1985) and VH
modes (Turnbull, 1995) among others. Distinctly different modes are usually explained by distinctly
different physics and a systematic search for high performance typically translates into an exploration
of the detailed device mode structure. It is important, then, to be able to identify the various
operating regimes accessible with a given experimental device.

Our recent experiments in stellarator (Jones, 1995) and magnetoelectrostatic confinement

devices (Jones, 1985) display evidence of complex mode structure. In fact, the preliminary



application of neural network analysis to a stellarator database resulted in the discovery of a
previously unsuspected mode of operation in which plasma confinement improved as the magnetic
confining field was reduced (Jones, 1995).

Artificial neural network programs are capable of modeling complex input-output
relationships learned on the basis of empirical examples alone. In the experiments which we wish
to model it is possible to vary the magnetic field used to confine the plasma, B, the neutral gas fill
density (Hydrogen), N,, and the RF power input from antennae used to sustain the discharge, P. We
are able to characterize the behavior of the experiment with a set of (average) “output” (performance)
parameters: the plasma (electron) temperature, T, the plasma density, N,, and the confinement time,

t. Each of these 6 parameters is averaged over an experimental run and then normalized so that
each quantity falis within the unit interval. The concatenation of the 6 scaled quantities then
constitutes a vector, V¥, which describes a given experimental run. The job of the neural network
is to group all of these 6 dimensional vectors into categories (“modes”). This has been accomplished
with an ART2 network (Carpenter and Grossberg, 1987 and Freeman, 1994).
The ART Network Algorithm
Each category is defined by a prototype (exemplar) P;, (Initially the P; are either defined by
the user or randomly selected from the set V*.) As each run vector V¥ is processed by the network
we use the maximum of the dot product
p, - V¥
to find the prototype that best categorizes that particular V.
We use
P VEs < Ly ®)
to test whether P, is sufficiently similar to V¥, Here o is a positive number:

et 9)

Vp

If V¥ is sufficiently similar to the existing P; then we test to see if:

P, VE=p (10)

with p the dimension of the vectors V*.

a vigilance parameter, o<p<I.

If acceptable V¥ belongs to that category P, and we modify P; to more closely resemble



A
(1-p) P, + pV*

Il a-pe, + v}

i

(1)

where B is a small positive number.

If V¥ is not sufficiently similar to P; then we define a new category with V¥ as its prototype
P.. This procedure is itterated for all V¥,

ART Creativity

If the network has previously learned a particular input vector it will quickly identify
(catagorize) that vector when it is presented with it again. If the network does not immediately
recognize an input vector it will search through its stored patterns (category examples) looking for
a match. If no match is found, then the network will learn (store) the new pattern, defining a new
category. If, on the other hand, the input matches a stored (known) pattern to within a specified
amount (determined by the vigilance parameter) then the existing category will be adjusted toward
the input vector pattern. An ART network trained on raw experimental data from the EBT device
rediscovered the known C, M, and T modes in this fashion.

Another way to use the algorithm is to input known mode exemplars (initial P,s) and adjust
the vigilance to see what other modes the network might suggest. Table 4 consists of the mode
prototypes P,, P,, and P, input by the user to describe stellarator experiments. Table 5 shows the
mode structure discovered by the network when presented with the existing experimental stellarator
database (Jones, 1995). P,, P,, and P, have been changed slightly by the network and two new
modes P, and Ps have been postulated. Experiments are now underway to see if P, and Ps do, indeed,
indicate physics which differs from that of the P, P,, and P, regimes.

Future Work: Analogy Machines

A form of analogical reasoning can be performed on feature vectors A, B, C, and D. A is to
B as CistoD. The vector difference B-A gives the magnitude and direction of the change starting
from category A needed to get to category B. Adding B-A vectorially to category C then produces
the desired analog vector D; i.e. D=C+B-A.



As a toy example in an attribute space having 3 dimensions (feline, young, canine) we can
perform the analog reasoning cat is to kitten as dog is to 7, In this space “cat” is the vector A=(1, 0,
0),“kitten” a vector B=(1, {, 0),and “dog” is C=(0, 0, 1). The difference vector B-A is then (1, 1, 0)-
(1, 0, 0)=(0, 1, 0); B differs from A in being young. B-A is then added to C; (0, 0, 1)+(0, 1, 0)= (0,
1, 1), i.e. D is a “young, canine”, that is a puppy.

In a vector space of categories C+B-A can be compared with all of the known categories
using the vector dot product operation. The existing category that is found to be nearest to C+B-A
is the solution D. If C+B-A is not close enough to any EXISTING category then a new D can be
defined; i.e. automated category discovery. The ART neural network algorithm can decide if the two
are “close enough”.

Conclusions
A number of computer experiments have been conducted which give evidence that several

forms of machine creativity are practical.
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Parameter

B (Gauss)
N, (mm)
P (Waits)
T (eV)
Ne (cm®)

t (ms)

Table

700
5x10°
50
14
10"

0.4

Y

Mode

700
10°

50

50
4x10"

0.3

1700
5x10°
200

25

4x 10"

0.6



Parameter

B (Gauss)
N, (mm)
P (Watts)
T (eV)
Ne (cm™)

t (ms)

700
4x10°
50

13

1.4x 10"

0.4

Table

700
107
50
53
3.9x 10"

0.3

Mode

1800
4x10°
200

24

4.1x 10"

0.6

750
107
250
50
3x 10"

0.4

1800
10°
500

60

5x 10"

0.4



Experiments With A Hierarchical Ensemble Classifier

R. Jones
Physical Sciences Department
Emporia State University

We describe the design and use of a hierarchical ensemble classifier.
Each of the component classifiers that make up the layered hierarchy is trained on a

data subset which is small compared to the complete training database.



Introduction

Ensemble classifiers have become one of the most active areas in machine
learning research (Dietterich, 1997 and Hansen and Salamon, 1990). Each of the
component classifiers that make up the ensemble can be trained on a subset of the
available data simplifying and speeding up the learning process. A further speed up is
possible if components can be implemented on multiple processors run in parallel.

A Hierarchical Ensemble Classifier

The present work employs a hierarchical arrangement of universal approximators
(figure 11) and bears some relationship to the ensemble classifier described by Chou
(Chou, 1999). The training database is first divided into a number of smaller datasets
by a standard clustering algorithm, figure 1. This is best illustrated using the toy
database example of figure 2, which was clustered by the k-means algorithm (excluding
Q) using commercial Unistat 4.5 software.

In this example In1 and In2 are inputs and Out1 and Out2 are responses which
yield reward Q. Three clusters were formed centered at (-.5, +.25, 0, .75), (1, -1, 0, 0),
and (-.1429, +.4286, 0, -.8571). The data subset that constitutes the first cluster (figure
3) is used to train ANN1 (artificial neural network 1) using commercial Brainmaker 3.5
software. The data subset forming the second cluster (figure 4) is used to train ANN2
and the data subset from the third cluster (figure 5) is used to train ANN3. Network
training takes In1, Out1, In2, and Out2 as ANN inputs and Q as the sole ANN output;

i.e., each of ANN1, ANN2, and ANN3 is a network having 4 inputs and 1 output.



Once ANN1, ANN2, and ANN3 have been trained the full data set (figure 2) is
passed through all three ANNs producing the nonlinearly transformed data set of figure
6. This representation is then clustered by the k-means algorithm forming 2 clusters
centered at (1.0756, 1.5794, 1.4755) and (0.2217, 1.2378, 0.3784). The data subset
from the first of these clusters (figure 7) is then used to train ANN4 (figure 8) and the
remaining data from figure 6 is used to train ANNS (figure 8).

With ANN1, ANN2, ANN3, ANN4, and ANNS all trained the full data set (figure 2)
is passed through the first 2 layers of the hierarchy to produce the doubly transformed
(and compressed) representation of figure 9. A final single classifier, ANNG, is then
trained on this compact 2 component representation, figure 10.

Classifier Use

With all 3 layers of the hierarchy trained the performance system is completed
(figure 11), and can be deployed. At time step 1 In1 is input. Out1 can then be
adjusted until a good Q value is obtained (subject, possibly, to performance time
limitations). At time step 2 In2 is added (to In1 and the frozen Out1) and Out2 is then
adjusted so as to optimize Q. The network of figure 11 successfully reproduces the
complete database of figure 2.

The toy example of figure 2 was chosen for illustrative purposes only. In more
realistic examples many more inputs, outputs, and time intervals have been employed.
In large scale applicationsit is also possible to employ more than the 3 hierarchical

layers illustrated in figure 11.
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Figure Captions
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Neural Network Categorization
of Experimental Data

R. Jones
Physics
Emporia State Univ.
Emporia, KS 66801

A neural network program is used to sort langmuir probe characteristics by category and data



Introduction

Computerized data acquisition systems have the potential for generating huge databases. Our
computer interfaced Langmuir probe diagnostic (El Jaeid, 1988) can, for instance, log far more probe
characteristic curves than we could possibly hope to analyze by hand. In order to make better use
of this data we have created a program which sorts the probe characteristics into a few fundamental
categories and by quality. This software tool allows the experimenter to sample the database and
automatically archive “typical” data sets in real time.

Langmuir Probe Characteristics

Electrostatic (“Langmuir”) probes continue to be one of the most important and most widely
used tools for making measurements in plasmas. Langmuir probes are routinely employed in order
to measure plasma density, n,, electron temperature, T,, and plasma potential, V..

The theory of current collection by biased electrodes of various different shapes (i.e. flat
metal discs, cylindrical wires, or conducfing spheres) is well understood in the limit of a magnetic
field free plasma (Hoyaux, 1968 and Schott, 1968).

A typical Langmuir probe consists of a metallic electrode which can be inserted into and
electrically biased with respect to the plasma. As the probe is biased more and more negatively the
electron current which is collected can be observed to decrease, figure 1. The electron temperature
is obtained from the bias voltage required to reduce the probe current by a factor of 1/e whereas the
density is proportional to the magnitude of the current itself.

Sorting Probe Characteristics by Category

In a Maxwell Boltzmann distributed plasma the Langmuir probe characteristic should be

roughly exponential in the region of voltages <V, (figure 1). Various other probe characteristic

shapes are possible, however. In the presence of a non-maxwellian plasma the probe characteristic



yd

curve may resemble figure 2 and we may not wish to proceed with a calculation of the electron
temperature from such a data set.

Noisy data may also be produced like that of figure 3. Again, conventional mathematical
data reduction may not be warranted.

In the presence of magnetic fields probe characteristics like those of figures 4 and 5 are
possible (Tagle, et al, 1987 and Guenther, et al, 1990). In each case subsequent mathematical
analysis must be modified according to the theories of Guenther and Tagle.

Probe data may also be off scale, figure 6, = ' This may occur if gas pressure is too low
(the data will then likely be off scale along the V axis, figure 6) or if the discharge current is too high
(the data will then likely be off scale along the [ axis), ~* - ‘Any of these (or other) categories
can be learned by an artificial neural network program provided that a number of examples from
each category of probe data are available for training the network.

The Neural Network

The artificial neural network has 100 inputs, 50 probe voltages and the 50 corresponding
currents drawn by the probe. These are fully connected to 25 hidden units, (One can add or delete
hidden units if the network does not train properly). The hidden units are, in turn, fully connected
to 7 output units, one for each of the 7 defined output categories.

The 100 input quantities are all normalized so as to fall within the unit interval 0-1 and
concatenated to form a 100 dimensional input vector, I,. Each characteristic curve is then described
by a vector I, and an appropriate category (output vector) corresponding to figures,

The output vector used is ,

O=1 0o o0 o0 0 0 O

for conventional Maxwellian plasmas,



Q,=0 10 0 0 0 0
for nonMaxwellian plasma with high energy tail,
% =0 0 1 0 0 0 O
for a magnetized JETLIKE plasma,
O,,'—' o 0 0 1 0 0 O
for a magnetized T-10 like plasma,
05= 0o 0 0 o0 1 0 O
for a noisy plasma, and

Op=0 0 0 0 0 1 O
or,

Q=0 0 0 0 0 0 1

for offscale data sets.

For each input vector I, the hidden unit j receives an input:

100
hy= Zw, I +w, (1)
k=1
and produces an output:
U=_1 »
T+exp(-h) @)

(We don’t know that this function is optimum but we use it because it is mathematically
convenient). W_ is an adjustable bias.

Output unit i then receives:

25 .
h; = _Ewijuj+wo (3)
J=1

and computes the output vector:



o'=__1
1+exp(-h) 4)

The initial values of the weights W;, and W;; are random numbers in the range between 0 and 1.
The computed theoretical output vector O,' is compared with the actual vector category O,

and the error O;-O,' is “back propagated” in order to correct the weights W;; and W, (Bishop, 1994).

The weights W;; are corrected by amounts:

, 1 |- 1 U
Awij=c(oi-o:>(1+exp<-hi) " Lrexp(hy / Y 5)
and the weights W, are corrected by amounts:
7 _1_ ) /_ 1 W
ijk =X c (0-0,) 1+exp(-hy) 1+exp (-h) “
(=1

(6)

(__1_)0_ _1_> I,
I+exp(-h) A~ T+exp(-hy)

where c, the “learning rate”, is a constjmt, typically 0.1 or 0.2. (c may be reduced as training
progresses.)
The weights are adjusted (corrected) at each calculation step by:

new w,=old w;; + Aw; (7)

new w,=old w; + Aw,
and the process is repeated, using the same single I,, O; until O, - O;' is smaller than some desired
error. Adjustable noise can be added to help escape from local minima. This whole process is then
repeated with I, O, data from additional probe characteristics taken from each of the defined
categories.

Training and Using the Network

The experimenter identifies 25 (or more) representative data sets corresponding to each of



the 7 categories. The neural network is then trained on these (175 or so) characteristics.
Once trained the neural network can be used to categorize new data sets in real time as
they are taken. Select data can be referred to the experimenter for viewing or sent on for the

appropriate data reduction software (providing temperature, density, or other output).
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Fig. 1.

Fig. 2.
Fig. 3.
Fig. 4.

Fig. 5.

Fig. 6.

Figure Captions
Langmuir probe current drawn, I, as a function of bias voltage, V. I, =electron current as
a function of bias voltage. I=ion saturation current.
A Langmuir probe characteristic taken in a non-Maxwellian plasma.
A Langmuir probe characteristic taken in a noisy (turbulent) plasma.
A Langmuir probe characteristic taken in a magnetic field in the JET device.

A Langmuir probe characteristic taken in a magnetic field in the T-10 experimental
device.

A Langmuir probe characteristic taken with low neutral gas fill pressure.
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Quiet Plasma

In Gas Mixtures

R. Jones
Physics Department

Emporia State University

Small amounts of argon gas introduced into helium plasmas results in reduced levels of
plasma turbulence.



Introduction

Most plasmas exhibit substantial amounts of turbulence or “noise.” Such
oscillations modify the characteristics of a plasma and contribute to such things as the
plasma’s electrical resistivity and transport. In most cases it would be desirable to
reduce the plasma noise, that is to “quiet” the plasma in some way.

In the early 1970s Bollinger (Bollinger, et al, 1972) reported that plasmas formed
in certain gas mixtures were unusually quiet. There was little effort to reproduce these
results, however (save for Michelsen and Hirshfield, 1974) nor was the work continued

by Siedl’s group.

Spurious Quiescence/ measurement defects
While working with the same device that Bollinger and Seidl employed Jones
(Jones, 1975) occasionally also observed quiet discharges. There observations were,

however, traced to conductive coatings building up on the Langmuir probes.

The plasma noise was measured using the circuit shown in Figure 1. The
plasma density is roughly proportional to the D.C. voltage (V) measured across the
resistor (R) and the noise (oscillation) level is given by the voltage fluctuation with time

(figure 2), dV.



The probe tip is illustrated in figure 3. Over time a silver-gray coating would build
up on the ceramic insulator (figure 3). This coating was composed of metal evaporated
from the discharge filament (figure 4), sputtered from the vacuum chamber or
component parts, and remnants of vacuum pump oil and vacuum grease. It was found
to be electrically conducting and formed a conducting path from the probe tip to ground
(figure 1).

As a consequence of the build up of the coating on the probe insulator the
spurious electrical path results in a gradual increase in the D.C. voltage measured
across R. This erroneously enhances the apparent plasma density while leaving the
fluctuation level, dV, unchanged. The apparent reduction in noise, measured as dv/V
was traced to the “dirty probe.”

New Research

Dispite the doubts which have been raised there was still some reason for
continued interest in Bollinger’s result. The addition of small amounts of hydrogen to C 0,
plasmas was seen to quiet laser discharges and improve their performance (Trtica and
Miljanic, 1994). Having quieter plasmas would also make experimental measurements
easier and more accurate. For this reason we decided to repeat Bollinger’s

experiments over a wide range of conditions

Experiment

The experiments were performed in a low pressure, hot cathode, magnetized

arc, figure 4. In this device electrons from the hot filament, C, are accelerated toward



grounded anodes, a, so as to strike and ionize a low pressure fill gas. Following
Bollinger’'s work discharges were in helium into which we added small quantities of
argon from a second gas feed line. Probes were cleaned regularly so that no
contaminant built up. Electrical measurements verified that there were no substantial

leakage currents to ground.

Adding a percent or two of argon to a helium discharge results in a measurable
increase in the plasma density. This makes sense theoretically. In the steady state the
ion loss along the magnetic field just bélances the gas ionization rate:

% = n,o v (1)

Wheren,is the neutral gas density, ¢ is the electron-gas ionization cross section, and v,
is the (average) ionizing electron velocity. The average time for ion loss is:

s
t% 3l (2)
Where L is the plasma column length and Cg is the ion acoustic speed:
C.=[Te 3
5 / T 3)
Where Te is the plasma temperature and Mi is the ion mass.

With two gas components contributing equally to the plasma density:

Mo T e b My, 0 Ve L T, (4)
ar: an& a;ie ] MH& = hha’_ ﬁ;r ; Mﬁv (5)
)7
So: Nnte _ O—Aam ~ Sx/lo » o
—_— = ~ Ox/e

Mt O, 7/\% 2.53 K017



As small amounts of argon are added the plasma density increases and the noise,
falls, figure 2. If large amounts of argon are added, however, (> 20%) the noise
increases again.

Discussion
Although we have confirmed Bollinger’s basic resuit we did make several new
findings. In our device the anode is far from the filament cathode. We did not require
the close anode-cathode fit which Bollinger specified (Bollinger, etal., 1972). We also
extended our experiment into the region of cold cathode discharge operation. We found
that as the cathode became cold new sorts of oscillations came to dominate the
discharge (sparking at the cathode) and these could not be quieted by the addition of

argon.
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Figure Captions
Figure 1: Langmuir probe circuit composed of probe wire, P, bias battery, b, resistor, R,
grounded metal vacuum chamber, c, and oscilloscope, V.

Figure2: Plasma density measurement as a function of time in pure helium discharge, a, and in
helium with 2% admixture of argon, b.

Figure 3: Langmuir probe consisting of wire tip, a, grounded coaxial conductor, ¢, and ceramic
insulator, b. Dashed line indicates how conductive short circuit “leakage path” can develop.

Figure 4: Discharge device consisting of negatively biased filament cathode, ¢, grounded anode,
a, and permanent magnets, m. This assembly sits in the metal vacuum chamber of figure 1.
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Plasma Optimization Using Data Mining

R. Jones
Physics Department, Emporia State University
Emporia, Kansas 66801

Data mining has been employed to model the performance of a plasma confinement
device. Plasma density, temperature, and confinement are predicted as functions of the
control parameters: magnetic field strength, neutral gas pressure, and discharge
voltage.

Introduction

Our understanding of plasma transport in magnetic confinement devices is
sketchy. Neither analytic nor computational models are sufficiently well developed to
describe accurately the behavior of real experimental systems. Artificial neural networks
(Bishop, 1994), on the other hand, are capable of modeling complex input-output
relationships learned on the basis of empirical examples alone.

As an initial effort to apply data mining technology to plasma optimization and
modeling we have employed data taken from a small research stellarator (Jones,
1985).In the experiment which we wish to model, it is possible to vary the magnetic field
used to confine the plasma, B; the neutral gas fill density (Hydrogen), N,; and the
voltage (V) used to sustain the discharge. The experiment is like that of Roth (1976) but
in a small stellarator. The discharge is sustained by biasing a probe or limiter with
respect to the chamber wall.

The “output” of our experiment is a set of three parameters, the plasma electron
temperature, Te; measured in electron volts, the plasma density, Ne (the number of
electrons and ions per cubic centimeter of volume); and the confinement time, t, in
seconds that the plasma is confined in the device (Jones, 1985). We are interested in
optimizing (maximizing) a figure of merit Te Ne t but we chose a three component output
vector O;' = (Te, Ng, t) in order to track the variation of all three output quantities
individually.

In the future we may wish to expand this “dependent variable set” in order to include ion
temperature and fluctuation level but (T, Ne, t) seemed a reasonable compromise at the
present time.



Mathematical Method
The neural network consisted of 3 input units, one each for B, N, and V. These
are connected fully to 10 hidden units. The hidden units in turn, are, connected fully to 3
output units, one each to represent Te, Ne, and t. B, Ny, V, Te, Ne, and t are all
normalized so as to fall within the unit interval.
For each vector l¢ the hidden unit j receives an input:

hy=Y3o1 Wi + Wo (1)
and produces an output:

1

Vit eocnp (2)
W is an adjustable bias. We typically have employed values of wy = -1.
Output unit | then receives:
h, = Z] Wi Vi + wy (3)
and computes the output vector:
O = s (4)

1+exp(—h;)

The initial values of the weights wjx and w;; are random numbers in the range
between 0 and 1.

The computed theoretical output vector O; then is compared with the actual
measured vector O;' and the error O;' - O; is back propagated in order to correct the
weights w; and wik (Bishop, 1994).

The weights w;; are corrected by amounts:

S)

~.

AWy = C(0;' = 0y) (M) (1 ™ t4exp (“hi)) v

and the weights wj are corrected by amounts:

MW = (01" = 0) (Tromcm) (1~ omcrn)

1+exp (—h;) 1+exp (—h;)
Y (S W— 1
X W'1(1+exp (—h]-)) (1 1+exp (—hj))lk (6)

where C is constant, typically 0.2.
The weights are adjusted (corrected) at each calculation step by:

new w; = old w; + Aw;; and new wi = old wi + Awi (7)



and the process is repeated, using the same single I, O;' vector pair, until O;' — O; is
smaller than some desired error. This process then is repeated with each additional
available training vector pair (lx, Oy").

Training on subsequent |y, O;' data sets reduces the network’s ability to
reproduce previous lx, O;' pairs. For this reason, repeated training “passes” are made
through the complete training set until O — O; is acceptably small for all data sets
employed. (The acceptable error O;' — O; is selected based on a knowledge of the
typical experimental accuracy obtainable for O').

The neural network was trained on ~50 data sets with B ranging from 500 to
2000 Gauss N, varing from ~107 to 10 mm and V varying from ~200 to 3000 Volts.

DISCUSSION AND RESULTS

Once trained, the neural network model was tested by inputing a number of
vectors (B, Ny, V) which had not been employed during the training process. The
number of training sets required to achieve a given accuracy of representation depends
strongly on the smoothness of the function being modeled (Poggio and Frederico,
1991).

After having been developed in this way the neural network model can be
explored by inputing any desired (B, N,, V) vector and recording the resulting O,. If the
object of the work is to maximize the product TeNct then we learn that in fact several
different optimal discharge “modes” are represented in the neural network model. In
one mode that we have identified, we determine that TeNct is maximized for maximum
input B. Nj,, as might be expected, however, should be of intermediate value, not
maximal. _

Unlike Roth (1976) who found a monotonic increase in plasma density in a
similar experiment:

N = CV''N,* (8)

Our data mining program suggests that there exist optimal settings of the discharge
voltage and gas fill pressure, N,, which leads to maximization of Ne, 7, and Tnr, figures
1-3.
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The origin of large scale fluctuations in a Roth torus

R. Jones
Physics Dept,
Emporia State University
Emporia, KS 66801

Abstract- The Roth torus plasma confinement device exhibits large scale fluctuations which are
attributed to unipolar arcing. These are undesirable and make experimental measurements
difficult at best.



Introduction

Toroidal magnetic confinement systems are among the most common and most
successful devices for confining hot fusion plasmas. Roth has suggested that electrode biasing of
such plasmas can improve both their temperatures (J.R. Roth, 1983) and confinement (J.R. Roth,
1992) by an order of magnitude.

We decided to explore this idea in our small stellarator device (R. Jones, 1985). The
device is illustrated in figure 1 where the plasma is electrically biased in the manor described by
Roth by inserting an electrode L and biasing it with respect to the grounded metal machine
vacuum chamber.

Experimental Result

The initial results were difficult to assess. With typical bias voltages of 1000-5000 Volts
DC (either polarity) the plasma was extremely noisy. Both Langmuir probes and electrostatic
energy analyzers (R. Jones, 1978 and 1979) showed plasma fluctuations that were approximately
100% of the plasma density itself. Few meaningful measurements were possible under these
conditions. Optical diagnostics like hydrogen alpha light emission exhibit similar large
fluctuations.

We have been conducting a study to try to identify the origin of these large scale
oscillations and believe we have now identified their cause. We frequently observe localized
flashes on the metallic interior of our device. These occur near sharp edges, corners, and
scratches and are only seen in the biased plasma experiments. They are not typical of our
previous RF plasmas.

Microscopic examination of the regions which exhibit the light flashes show the pits and

tracks characteristic of unipolar arcing (Holliday, 1966). We have tested this hypothesis in



several ways. Firstly, we have cleaned the metallic surfaces chemically, mechanically, and by
discharge cleaning. In each case the flashes are reduced as is the amplitude of the plasma
oscillations. Secondly, we have inserted clean and oxidized metallic limiters into the plasma. The
“dirty” (oxidized) samples produce flashes and enhance the fluctuation level seen on our
diagnostics as expected if the origin is unipolar arcing.
Conclusions
We have identified unipolar arcing in our Roth torus experiment. We find that this makes
it difﬁéult to observe the increased plasma temperatures and confinement Roth predicted. Some
reduction in this fluctuation level is possible if the discharge chamber is repeatedly cleaned.
Unfortunately our machine is intricate and is not easy to clean nor is it easy to keep oxide
deposits from accumulating.
References
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Figure Caption



Plasma device with toroidal magnetic field coils, T, toroidal plasma column, P, vacuum chamber,

C, probe, L and limiters S.






Plasma Diagnostics

R. Jones

Introduction

Plasma diagnostics have been the subject of numerous texts.
The purpose of the present article , then, is to introduce the
subject and to present those techniques best suited to the
austere research environment found in University laboratories

in general and developing countries in particular.
The Langmuir Probe

A simple metal electrode inserted directly into the
plasma and biasable with respect to (machine) ground is known
as a "Langmuir Probe." The current versus voltage curve

obtained from the electrode is called the Langmuir probe

characteristic.

A detailed theory of the Langmuir probe is still being
developed to this day and we will offer only an introductory
discussion here. Anyone who is interested (or confused) is
refered to the text "Electric Probes In Stationary and

Flowing Plasmas"{



The "typical" (or ideal) Langmuir probe characteristic is
shown in figure 1 and can be divided into 3 regions, the
"electron saturation” region A, the "active region" B, and the
"jon saturation" region C. The "positive" probe current I in
this diagram indicates electron current flow to the probe while
-I indicates ion flow. Since the ion mass far exceeds the
electron mass ions generally move much more slowly and the ion
current density is small compared to the electron current
density. "V%"indicates the so called "plasma potential' or
"space potential" obtainable directly from the probe
characteristic . The point of transition between regions A
and B may not be a sharp one and Vp is often estimated by
extrapolating the slopes from each region (dashed lines) in
order to obtain a well defined intersection point. "Iesat“
‘iévtherprobe-current cofresponding to a ?robérbigé potential

vV = Vp and is called the "electron saturation current.”
With the probe biased to the same potential as the plasma

itself (i.e. Vp) the average electron current flowing to the

probe will be:

sat

where the average electron velocity directed toward the probe

(of area A) is:



with fe(Ve) the (normalized) Maxwellian velocity distribution

function of plasma electrons:

C2mKT =3/2 —% vi
£ = L <
o Ve) =l ) exp (—z—) (3)
having temperature Te. K is Boltzmann's constant, e is the

electronic charge, and T, may be expressed in °K or in electron

volts (1 ev = 11,605°K). Performing this integration we obtain:

'KTe L
I = A n e )2 (4)
e e "2Tm :
sat e

from which we can calculate Dy the plasma density (in particles

per cubic centimeter) once T has been determined.

Vf(figure 1) is called the probe "floating potential”
and is the probe voltage at which the total probe current I
(ion plus electron) just equals zero. This is the voltage an

unbiased probe will acquire when it is inserted into a plasma.

The plasma electron temperature is obtainable from the
probe characteristic in the region B. In region B the probe
voltage, V, is negative with respect to the potential of the

plasma (Vp) and slow electrons of energy

%mVi < e(Vp - V) (5)



are unable to climb the potential barrier Vp—V and reach the

probe. The probe electron current in this region will then be:

[ee)

Ie = Re n_ J Vefe (Ve)dve (6)
V.
min
where
v % = e (V. - V) (7)
*'min p

[ee]

T = ef f (E )dE (8)
e e e
eV

and we observe that the electron energy (not velocity)
distribution function is proportional (in region B) to the

derivative of Ie with respect to the probe potential (i.e.

(i.e. edV « dE_ a V _dV )«
e e e

Integrating 6 we obtain:

KT 5 e(V-v_)
Ie(V) = Ae ne(2wme) exp ——?T;EL- (9)

If we neglect the ion current to the probe (which is small) then

I = Ie and this equation suggests that a plot of 1In(I) versus V

=

(in region B) should give a straight lime (if the electrons

are Maxwellian distributed) of slope e/KTe. Te in electron

volts can then be read directly from a semilog replot of the



probe characteristic (region B).

For simplicity we have assumed a simple one dimensional
(plane) geometry. In practice various probe geometries are
employed. Cylindrical probes can be fashioned by simply
baring the tip of the center conductor of a semiridged
coaxial cable. (BA 50250 copper coax available from
Sealectro Limited, Walton Rd., Farlington, Portsmouth,
Hampshire, U.K. is vacuum tight and can be inserted through
a vacuum wall via an EdWards High Vacuum 08-C006-00-000
Rotary Vacuum Seal). Since A can be enhanced by the sheath
dimensions a flat probe (with A >> Aéebye) is preferred for
absolute density measurement. A cylindrical probe is, however,
less sensitive to primary (nonthermal) electrons.

Probe cleanliness is important for measurements of all
kinds and is usually insured by discharge cleaning. This
involves biasing the probe very positive so as to heat it red

hot. If the plasma is not too tenuous a very negative

potential can also be used for ion sputter cleaning.

Multiple probe techniques have been evolved to solve
particular problems. Double probes reduce the peak probe
current and so minimize perturbations to the plasma as well as
probe heating2. Triple probes allow real time measurements
of the plasma parameters in pulsed dischargesB. Langmuir probes
are also frequently used (at various D.C. biases) to detect RF
oscillations, either as fluctuations in the probe current or

voltage.



A floating hot probe will emit thermionic electrons
and tend to charge itself positively until its potential becomes
comparable to the plasma space potential4. An ohmically
heated probe (i.e. a filament immersed in the plasma) then
will "float" at the plasma potential when made sufficiently
hot and at the usual floating potential (figure 1) when cold.
Such "emissive"” probes are useful in making D.C. electric

field measurements.

Energy Analyzers:

Although electron and ion beams are detectable with
flat Langmuir probes the signal due to thermal ions is swamped
by the plasma electron current. The simplest energy analyzerf
then, is a flat probe ("collector") preceeded by a biasable
selector ("discriminator") grid. Additional grids are
usually added to control the plasma-analyzer sheath, suppress

secondary emission at the collector, or improve resolution.

A typical ion analyzer will have a metal case and entrance
grid which are floating, a second ("control") grid which is
biased sufficientiy negative to repel most of the electrons
which were able to enter through the plasma-analyzer sheath,
and a collector plate which is (voltage) swept in the manner
of a Langmuir probe. Alternately, the collector can be held

at fixed bias while a control grid is swept.



To minimize edge effects the grid diameter is made large
compared to the spacing between the grids and collector. To
assure a continuous sheath the entrance grid must have a mesh

which is fine compared to the plasma Debye length.

Analyzer resolution is limited by mechanical constraints,
field penetration of the grids, space charge effects, and
possibly sputtering and secondary emission (important if ion
energies exceed ~10 eV). Secondary emission is usually
suppressed by adding a (negatively biased) grid just in front

of the (secondary emitting) collector.

Placed at floating potential the entrance grid admits
roughly equal currents of electrons and ions. Space charge is
not neutralized beyond the discriminator grid, however, and if
the current flowing in this (subsequent) region exceeds the

Child Langmuir value:

CW3/2
d2

J = (10)
(where W is the particle energy and d is the grid—-collector
spacing) then a virtual cathode (or anode) will form and distort

the transmitted signal.

The performance of the analyzer can also be limited by
field penetration, that is, the effect of a nearby electrode
on the potential present between the wires of the control grid.

. . r d
Better resolution requires higher values of 3 and g'where r

is the grid wire radius and a is the spacing between grid



wires. Sensitivity depends upon keeping J, the analyzer

d&hs,"é)

current, large, so g can not be raised (this would reduce grid

transparency) . g then should be increased. This can be done

by using a fine mesh (which is limited, ultimately, by heating

and mechanical resistance to warping) or a larger analyzer.

Increasing d is also seen to conflict with the space charge

limitation, equation 10.

Energy analyzers can also be biased so as to reject both

electrons and ions and to detect energetic neutrals by the

secondaries they generate at the collector5

Magnetic Probes:

Pulsed currents and magnetic fields can be measured with
external "pick-up coils" or probes. A simplified
"Ro_gowski belt" or "coil" is illustrated in figure 3a.
The Rogowski coil cénsists(usually) of a large aspect
ratio torus, evenly wound, with each turn (locally)
perpendicular to the torus. By Ampere's law such a
"belt" gives an output voltage which is proportional to

J %-5@ where g is generated by the total time varing
current enclosed by the toroid. Such a coil is typically

attached to an integrator as shown in figure 3a. For

sufficiently large resistance R the output voltage is then



‘é‘ J u é'}df:—y— i (11)

where i1 is the enclosed (plasma) current and M is the mutual
inductance between the plasma loop and the coil. Only the
total enclosed current can be so inferred. Current profile
measurements require the fabrication of small diameter probes
which can be inserted into and moved about within the plasma.

M is typically determined by calibration with a known A.C.
current flowing in a wire inserted through the coil. For a
sufficiently large number of even toroidal windings M is
independent of the spatial location of this calibration current

(or the wire size) within the toroid.

The coil windings must be closely wound so as to enclose a
tube of flux but the belt itsélfcah be deformed intorahy
convenient shape which encloses the current to be measured. The
minor cress-section of the belt can also be noncircular.

A large integration time constant, RC, must be employed
so as to meet conflicting requirements of sensitivity, rate of
exponential decay of the output voltage, and the inherent
"frequency" of the current being measured, i(t). Additional gain
is often incorporated in the form of a "Miller integrator”

replacing the simple passive filter circuit of figure 3.

Any variable external magnetic fields (such as pulsed
plasma confinement fields) can induce error signals in a simple
Rogowski coil. "Back winding" is used as a first order correction

for this effect, figure 3b. An improved system corrects for



placement of the back wound conductor, figure 3c. The poten-
tiometer is set to minimize the output in the absence of plasma

but with the ambient (confining) fields on.

2. A simple wire ("diamagnetic") loop can be used to measure
the time rate of change of magnetic flux and so infer the
plasma dia- or para- magnetism. The energy content of
high pressure plasmas can be obtained in this way. Such
loops are also employed to detect magnetic fluctuations.
As with Rogowski coils diamagnetic loops may be mounted
externally or inserted directly into the plasma. A typical
loop might consist of a plastic spool 1 cm in diameter by
vl oem long wound with 10-100 turns of copper magnet wire
(v #30) insulated and wrapped with a 710 micron sheet of
metal foil to provide electrostatic shielding. The shield
is grounded and the coil output is amplified with an
instrumentation (operational) amplifier. Calibration

techniques are described in Lovberg

Microwave Interferometry:

In a plasma dielectric microwave radiation suffers a phase

shift

2 )
w T w
(12)

>
o
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S——
(@] gl
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where w is the microwave frequency and wbe is the plasma frequency.,
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A¢ can be measured by an interferometer, figure 4, from which

the plasma density can then be calculated.

In a real (inhomogeneous) plasma ne(x) = nef(x) and with

<< (A
UJpe A/

c Ad w me
n_ = (13)

9 L
e ZWJ f(x)dx
o

f(x) can be obtained by radial Langmuir probe scans.

Horns are commonly used for launching the signal across
the plasma. The transmitted signal and the reference are added
in a magic tee and detected by a crystal diode and high gain
émplifier. The iefereﬁceaéignéliamplitude>ahd phase are vafied
to obtain a null. This is then repeated in the absence of plasma
to obtain A¢.8

A square wave modulated microwave signal is useful to reduce
errors due to D.C. shifts in the signal amplitude. Cavity modes
are to be avoided by keeping %%g small compared to the chamber
dimensions. Steel wool absorbers placed around the microwave

horns will help to reduce this problem.

For magnetoplasmas the plane of polarization is parallel to
the magnetic field and the direction of propagation is perpendicular

to the field.
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Plasma Wave Diagnostics:

Mapping of plasma wave dispersion can give information on
the plasma parameters and has the advantage of operating even in
very tenuous plasmas. Tracing out the ion acoustic dispersion
relation, for instance, allows one to determine the plasma density
(via(gpi) and obtain information about the plasma temperature

through

(14)

where Ye and Yi are the ratio of specific heats for ions

(commonly Yy~ 3) and electrons (Yerzjlj.

Luris obﬁainable difectly by spectruﬁ aﬁaiyzéf whilé k is
most often obtained by 2 probe interferometry. Here
a plasma wave is launched from one probe and detected by a
second, moving, probe. The transmitted signal is added to a
reference signal (of comparable amplitude) and k is computed
from the shift in probe spacing needed to make the sum of the

two signals go through successive maxima or minima.

The cost and complexity of plasma wave diagnostics is most
often justifiable when the research group involved already has

an ongoing interest in plasma wave phenomena.
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Plasma Spectroscopy:

Monochromators and spectrographs can be used to examine the
light emitted by a plasma and, in conjunction with various
theoretical assumptions, provide plasma density and temperature

, . 9
information.

Most methods for the spectroscopic determination of plasma
temperature require only relative measurements of light
intensity. Density estimates, on the other hand, can be
obtained either from Stark profiles or from absolutely calibrated

intensity measurements.

These methods are generally restricted to high plasma
densities in order to obtain ample light intensity or to fulfil
certain theoretical assumptions needed for data reduction.

(High temperature plasmas can also present difficulties but this
is probably of less concern to us here.) The use of optical

diagnostics is then usually limited to pulsed plasma experiments

or the 1like.

Typical steady state bench top plasma devices may provide
ample radiation for (broad spectrum) observation by simple
photo diodes, phototransistors, or photo' cells. Over a narrow
range of plasma parameters (and neglecting the possible stray
light attributable to hoﬁ filaments, reflection, etc.) the
output of these devices can be calibrated against Langmuir probes
to give plasma density estimates. Such techniques are useful in

that the resulting optical (luminosity) density diagnostic is



non-invasive and will not disturb a plasma as a Langmuir probe
measurement woyld. The time variation of such photodetectors
has also been usedin the study of plasma waves in the Elmo

Bumpy Torus.

14
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TURBULENT THERMAL INSULATION
WiTH CLuMP REGENERATION

Anp WALL -CONFINEMENT

R, JoNES

DuPree's theory of clump regeneration suggests
a considerable reduction in the parasitic electron
overheating that will be associated with turbulent

thermal insulation.



The usual inertial confinement Scaling for open

magnetic systems:

3 v 1,
e © "p " AC,  2C (1)
S

1t

where V is the plasma volume, A is the loss area, and Cg

is the ion sound speed, can be combined with the Lawson

criteria:
! 4
T = 107eV (2)
Nt 1014cm*38
E =
ina g <1 device:
8
g =—omT ' (3)
B2

to predict the length of a breakeven experimentl. With
B limited by present day iguperconducting magnet techﬁologyz.

5

BI2x 100G

such a Lawson device would have a length L ; 1 Xm.

This excessive length is readily improved by the
addition of cold material end plugsB. In the presence of
the resultiné axial pressure balance electron thermal

. , 4
conduction losses dominate .

~

L2 .
L
1 (=) v
E (4)
Ve
where Vé is the electron thermal speed and v is the electron
collision frequency(measured parallel to the confining

magnetic field). For typical breakeven parameters,



B=2%x10%, n = 10" en >, 1, = 1077, T = 10%ev, and
classical electron collisions, v a'Q%:
T
L = } Km, '

N
only a factor of 2 improvement. A practical device would

then require the turbulent enhancement4’5 of v |

Turbulent thermal insulation would, however, result
in a concurrent turbuleﬁt‘plasma heating which must not
become'excessiveéz

Pf_?_’l_‘ ‘ (5)

E .

where P is the turbulent heating power density. If

P = Wu where W is the turbulent wave energy density and

v is approximated by7:

v o= W Ll

be TT (6)

the breakeven length becomesS:
L = 200 meters

and the maximum allowable turbulence level is about::

W -5
T C 10
E_,___,(”_(_i_n_)z
nT n
dn _ es

n KT

In DuPree's theory of turbulenceg’lo, however, clumps

are regenerated and the decay of injected turbulence is



....4_.
extended to -5 times the effective particle collision time'’.
This reduced turbulent heating rate has been observed in
computer simulation®®s*2%,*% and would allow a further

reduction in reactor length.

Equating the furbulent heating rate to the glectron

energy loss rate:

TE o}

~J
s

Solving equations 4, 6 and 7 with n = 10 7cm™?, T = 10" eV)t:/ddg:
L 2 100 meters. .

Tt is also useful to know how nt scales with reactor
size. Combindngceguations 4,.6, and 7 with the condition

B = 1 we obhtain:

u

é =
e (BFat

3 (8)

If T is held fixed then for 8 = 1 we have n«<B? so: -

4 1
T « L3 B3 : k (9)
or s 4 7 ,
ny « »L3 B3 ) - : (10)

B is, of course, fixed by engineering constraints leaving

nt determined by_LA/B'

Further length reductioh can be obtained by going over”to
wall confined plasmas®", B > 1. For a plasma with n :lol?cmf)
- W o —_
B =2 x 10%G, T » 1l0%eV, 15 =10 s, and oy = 5 x 10 ’,
Solving eguations 4 and 6 gives:
>

L Z 1 meter

when equation 7 is just satisfied.



With B8 > 1 radial heat flow is governed by the equation'®.

3nr?

Tp = 9% | . ‘ - (11)

where K, the thermal conductivity, may be turbulently enhanced

by a factor of ~ 20 since

]‘.

)

A
P nT

-3/2
" 3/2

V

5 ~ 20
classical n

Solving 11 gives a reactor plasma radius:

r 2 5 cm

and a plasma energy nTrr?L of 2 300 MJ. Such a compact breakeven
device would be more than competitive with any of the main line

reactor concepts currently under study.
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